Cardinalities of k-distance sets in Minkowski spaces
نویسنده
چکیده
A subset of a metric space is a k-distance set if there are exactly k non-zero distances occuring between points. We conjecture that a k-distance set in a d-dimensional Banach space (or Minkowski space), contains at most (k+1) points, with equality iff the unit ball is a parallelotope. We solve this conjecture in the affirmative for all 2-dimensional spaces and for spaces where the unit ball is a parallelotope. For general spaces we find various weaker upper bounds for k-distance sets.
منابع مشابه
On a generalization of distance sets
A subset X in the d-dimensional Euclidean space is called a k-distance set if there are exactly k distinct distances between two distinct points in X and a subset X is called a locally k-distance set if for any point x in X , there are at most k distinct distances between x and other points in X . Delsarte, Goethals, and Seidel gave the Fisher type upper bound for the cardinalities of k-distanc...
متن کاملNew distance and similarity measures for hesitant fuzzy soft sets
The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...
متن کاملAsymptotics of Best-packing on Rectifiable Sets
We investigate the asymptotic behavior, as N grows, of the largest minimal pairwise distance of N points restricted to an arbitrary compact rectifiable set embedded in Euclidean space, and we find the limit distribution of such optimal configurations. For this purpose, we compare best-packing configurations with minimal Riesz s-energy configurations and determine the s-th root asymptotic behavi...
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملNew upper bound for the cardinalities of s-distance sets on the unit sphere
We have the Fisher type inequality and the linear programming bound as upper bounds for the cardinalities of s-distance sets on S d−1. In this paper, we give new upper bounds for the cardinalities of s-distance sets on S d−1 for any s. Those upper bounds is a generalization of the Fisher typer inequality and is useful for s-distance sets which are not applicable to the linear programming bound.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 197-198 شماره
صفحات -
تاریخ انتشار 1999